Methylphenidate enhances noradrenergic transmission and suppresses mid- and long-latency sensory responses in the primary somatosensory cortex of awake rats.

نویسندگان

  • Candice Drouin
  • Michelle Page
  • Barry Waterhouse
چکیده

Noradrenergic neurons send widespread projections to sensory networks throughout the brain and regulate sensory processing via norepinephrine (NE) release. As a catecholamine reuptake blocker, methylphenidate (MPH) is likely to interact with noradrenergic transmission and NE modulatory action on sensory systems. To characterize the neurochemical actions of MPH in the primary sensory cortex of freely behaving rats and their consequences on sensory processing, we measured extracellular NE levels in the primary somatosensory (SI) cortex by microdialysis and recorded basal and sensory-evoked discharge of infragranular SI cortical neurons, before and after intraperitoneal administrations of saline or MPH (1 and 5 mg/kg). Both doses of MPH significantly increased NE levels in the SI cortex (+64 and +101%, respectively). In most neurons, stimulation of the whisker-pad induced a triphasic response, consisting of a short-latency excitation [4.7 +/- 0.2 (SE) ms] followed by a postexcitatory inhibition (36 +/- 1.5 ms) and a long-latency excitation (105 +/- 2.6 ms). Under control conditions, the behavioral state of the animal was correlated with the magnitude of the short-latency excitation but not with other aspects of the basal and sensory-evoked discharge of SI cortical neurons. At 5 mg/kg, MPH significantly increased locomotor activity and induced a significant suppression of the short-latency excitation, which probably resulted from the MPH-induced change in behavior. In addition, both doses of MPH suppressed the postexcitatory inhibition and the long-latency excitation evoked by the stimulation of the whisker pad. These effects did not seem to result from the locomotor effect of MPH and probably involved MPH-induced enhancement of noradrenergic transmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Staying in touch with methylphenidate: AHDH and sensory processing. Focus on "methylphenidate enhances noradrenergic transmission and suppresses mid- and long-latency sensory responses in the primary somatosensory cortex of awake rats".

Drouin et al. (this issue of J. Neurophysiol. p. 622–632) provide the first analysis of the neurochemical and neurophysiological effects of the stimulant medication, methylphenidate (MPH), in sensory cortex of freely behaving animals. MPH has been prescribed to children and adults with Attention Deficit Hyperactivity Disorder for decades (under the brand name Ritalin), yet little is known about...

متن کامل

Noradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex

Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...

متن کامل

Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity

Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...

متن کامل

Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex

Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 96 2  شماره 

صفحات  -

تاریخ انتشار 2006